Ono Research Unit
Nagoya University, Research Institute of Environmental Medicine, Department of Neural Regulation
Selected articles
-
Ono, D.*, Wang, H., Hung, J.C., Wang, T.H., Kon, N., Yamanaka, A., Li, Y., and Sugiyama, T. Network-driven intracellular cAMP coordinates circadian rhythm in the suprachiasmatic nucleus. Science Advances 9(1), DOI: 10.1126/sciadv.abq7032 (2023). *: Corresponding author
-
Ono, D.*, Mukai, Y., Hung, J.C., Chowdhury, S., Sugiyama, T., and Yamanaka, A.* The mammalian circadian pacemaker regulates wakefulness via CRF neurons in the paraventricular nucleus of the hypothalamus. Science Advances 6(45), 10.1126/sciadv.abd0384 (2020). *: Corresponding author
-
Hung, J.C.#, Ono, D.#, Kilduff, S.T., and Yamanaka, A. Dual Orexin and MCH neuron-ablated mice display severe sleep attacks and cataplexy. eLife 9:e54275, doi: 10.7554/eLife.54275 (2020). #: Co-first author
-
Ono, D.*, Honma, K., Yanagawa, Y., Yamanaka, A., and *Honma, S. GABA in the suprachiasmatic nucleus refines circadian output rhythms in mice. Commun. Biol. doi: https://doi.org/10.1038/s42003-019-0483-6 (2019). *: Corresponding author
-
Ono, D.*, Honma, S.*, Nakajima, Y., Kuroda, S., Enoki, R., and Honma, K.: Dissociation of Per1 and Bmal1 circadian rhythms in the suprachiasmatic nucleus in parallel with behavioral outputs. Proc. Natl. Acad. Sci. U S A. doi: 10.1073/pnas.1613374114 (2017). *: Corresponding author
-
Ono, D., Honma, S., and Honma, K.: Differential roles of AVP and VIP signaling in the postnatal changes of neural networks for coherent circadian rhythms in the SCN. Science Advances 2, e1600960 (2016).
-
Ono, D., Honma, S., and Honma, K.: Cryptochromes are critical for the development of coherent circadian rhythms in the mouse suprachiasmatic nucleus. Nature Communications 4:1666 doi: 10.1038/ncomms2670 (2013).
Selected review articles
-
Ono, D.*, Weaver, D.R., Hastings, M.H., Honma K-I, Honma S, Silver, R.* The Suprachiasmatic Nucleus at 50: Looking Back, Then Looking Forward. Journal of Biological Rhythms. 39(2):135-165 doi:10.1177/07487304231225706 (2024) *: Corresponding author 【PDF】
-
Ono, D.*, Honma, K., and Honma S.* Roles of Neuropeptides, VIP and AVP, in the Mammalian Central Circadian Clock. Front. Neurosci. 15:650154. doi: 10.3389/fnins.2021.650154 (2021) *: Corresponding author
New!!
Original articles
-
Pham X.T., Abe, Y., Mukai, Y., Ono, D., Tanaka, F. K., Ohmura, Y., Wake, H., and Yamanaka, A. Glutamatergic signaling from melanin-concentrating hormone-producing neurons: A requirement for memory regulation, but not for metabolism control. PNAS Nexus 3 (7), 275. (2024)
-
Myung, J., Nakamura, T.J., Jones, R.J., Silver, R., and Ono, D. Editorial: Development of Circadian Clock Functions II. Frontiers in Neuroscience 18:1453328. doi: 10.3389/fnins.2024.1453328 (2024)
-
Ono, D.*, Weaver, D.R., Hastings, M.H., Honma K-I, Honma S, Silver, R.* The Suprachiasmatic Nucleus at 50: Looking Back, Then Looking Forward. Journal of Biological Rhythms. 39(2):135-165 doi:10.1177/07487304231225706 (2024) *: Corresponding author
-
Ito, H., Fukatsu, N., Rahaman, M. S., Mukai, Y., Izawa, S., Ono, D., Kilduff, S. T., Yamanaka, A. Deficiency of orexin signaling during sleep is involved in abnormal REM sleep architecture in narcolepsy. 120:41, e2301951120 Proc. Natl. Acad. Sci. U S A (2023).
-
Mukai, Y., Okubo, T., Lazarus, M., Ono, D., Tanaka, K., and Yamanaka, A. Prostaglandin E2 induces long-lasting inhibition of noradrenergic neurons in the locus coeruleus and moderates the behavioral response to stressors. Journal of Neuroscience doi.org/10.1523/JNEUROSCI.0353-23.2023 (2023).
-
Li, R., Masuda, K., Ono, D., Kanbayashi, T., Hirano, A., and Sakurai, T. Aripiprazole disrupts cellular synchrony in the suprachiasmatic nucleus and enhances entrainment to environmental light–dark cycles in mice. Frontiers in Neuroscience 17:1201137. doi: 10.3389/fnins.2023.1201137 (2023).
-
Ono, D.*, Wang, H., Hung, J.C., Wang, T.H., Kon, N., Yamanaka, A., Li, Y., and Sugiyama, T. Network-driven intracellular cAMP coordinates circadian rhythm in the suprachiasmatic nucleus. Science Advances 9(1), DOI: 10.1126/sciadv.abq7032 (2023). *: Corresponding author
-
Natsubori,A., Hirai,S., Kwon, S., Ono, D., Deng, F., Wan, J., Miyazawa, M., Kojima,T., Okado,H., Karashima,A., Li, Y., Tanaka,F. K., and Honda, M. Serotonergic neurons control cortical neuronal intracellular energy dynamics by modulating astrocyte-neuron lactate shuttle. iScience DOI:https://doi.org/10.1016/j.isci.2022.105830 (2023).
-
Padlom, A., Ono, D., Hamashima, R., Furukawa, Y., Yoshimura, T., and Nishiwaki-Ohkawa, T. Level of constitutively expressed BMAL1 affects the robustness of circadian oscillations. Scientific Reports 12, 19519 (2022).
-
Ono, D.* Neural circuits in the central circadian clock and their regulation of sleep and wakefulness in mammals. Neuroscience Research doi.org/10.1016/j.neures.2022.05.005 (2022). *: Corresponding author
-
Rahaman, S.M., Chowdhury, S., Mukai, Y., Ono, D., Yamaguchi, H. and Yamanaka, A. Functional interaction between GABAergic neurons in the ventral tegmental area and serotonergic neurons in the dorsal raphe nucleus. Frontiers in Neuroscience 16:877054. doi: 10.3389/fnins.2022.877054 (2022).
-
Hung, J.C., Yamanaka, A., and Ono, D*. Conditional knockout of Bmal1 in corticotropin-releasing factor neurons does not alter sleep–wake rhythm in mice. Front. Neurosci. 15:808754. doi: 10.3389/fnins.2021.808754 (2022). *: Corresponding author
-
Nishide, S., Suzuki, Y., Ono, D., Honma, S., and Honma, K. The food-entrainable oscillator is a complex of non-SCN activity bout oscillators uncoupled from the SCN circadian pacemaker. Journal of Biological Rhythms doi: 10.1177/07487304211047937 (2021).
-
Ono, D., Honma, K., Schmal, C., Takumi, T., Kawamoto, T., Fujimoto, K., Kato, Y., and Honma S. CHRONO and DEC1/DEC2 compensate for lack of CRY1/CRY2 in expression of coherent circadian rhythm but not in generation of circadian oscillation in the neonatal mouse SCN. Scientific Reports 11:19240, (2021).
-
Myung, J.*, Nakamura, T.J., Jones, R.J., Silver, R., and Ono, D.* Editorial: Development of Circadian Clock Functions. Front. Neurosci. 15:735007. doi: 10.3389/fnins.2021.735007 (2021). *: Corresponding author
-
Kolarski, D., Miró-Vinyals, C., Sugiyama, A., Srivastava, A., Ono, D., Nagai, Y., Iida, M., Itami, K., Tama, F., Szymanski, W., Hirota, H., and Feringa., L. B. Reversible modulation of circadian time with chronophotopharmacology. Nat. Commun. 12(3164), doi.org/10.1038/s41467-021-23301-x. (2021).
-
Ono, D.*, Honma, K., and Honma S.* Roles of Neuropeptides, VIP and AVP, in the Mammalian Central Circadian Clock. Front. Neurosci. 15:650154. doi: 10.3389/fnins.2021.650154 (2021) *: Corresponding author
-
Ono, D.*, Mukai, Y., Hung, J.C., Chowdhury, S., Sugiyama, T., and Yamanaka, A.* The mammalian circadian pacemaker regulates wakefulness via CRF neurons in the paraventricular nucleus of the hypothalamus. Science Advances 6(45), 10.1126/sciadv.abd0384 (2020). *: Corresponding author
-
Ono, D., Honma, K., and Honma, S.: GABAergic mechanisms in the suprachiasmatic nucleus that influence circadian rhythm. J. Neurochem. doi: 10.1111/jnc.15012 (2020).
-
Hung, J.C.#, Ono, D.#, Kilduff, S.T., and Yamanaka, A. Dual Orexin and MCH neuron-ablated mice display severe sleep attacks and cataplexy. eLife 9:e54275, doi: 10.7554/eLife.54275 (2020). #: Co-first author
-
Kolarski, D., Sugiyama, A., Breton, G., Rakers, C., Ono, D., Schulte, A., Tama, F., Itami, K., Szymanski, W., Hirota, T., and Feringa, L.B. Controlling the Circadian Clock with HighTemporal Resolution through Photodosing. J. Am. Chem. Soc., 141(40):15784-15791. doi: 10.1021/jacs.9b05445. (2019).
-
Izawa, S, Chowdhury, S., Miyazaki, T., Mukai, Y., Ono, D., Inoue, R., Ohmura, Y., Mizoguchi, H., Kimura, K., Yoshioka, M., Terao, A., Kilduff, S. T., and Yamanaka, A. REM sleep-active MCH neurons are involved in forgetting hippocampus-dependent memories. Science 20;365(6459):1308-1313. doi: 10.1126/science.aax9238. (2019).
-
Schmal, C., Ono, D., Myung, J., Pett, J.P., Honma, S., Honma, K..I, Herzel, H., Tokuda, I.T. Weak coupling between intracellular feedback loops explains dissociation of clock gene dynamics. PLoS Comput. Biol. 15(9):e1007330. doi:10.1371/journal.pcbi.1007330. (2019).
-
Ono, D.*, Honma, K., Yanagawa, Y., Yamanaka, A., and *Honma, S. GABA in the suprachiasmatic nucleus refines circadian output rhythms in mice. Commun. Biol. doi: https://doi.org/10.1038/s42003-019-0483-6 (2019). *: Corresponding author
-
Chowdhury, S., Matsubara, T., Miyazaki, T., Ono, D., Fukatsu, N., Abe, M., Sakimura, K., Sudo, Y., and Yamanaka, A. GABA neurons in the ventral tegmental area regulate non-rapid eye movement sleep in mice. eLife doi: 10.7554/eLife.44928. (2019)
-
Lee, J.W., Hirota, T., Ono, D., Honma, S., Honma, K., Park, K., and Kay, S.A. Chemical Control of Mammalian Circadian Behavior through Dual Inhibition of Casein Kinase Iα and δ. J. Med. Chem. doi: 10.1021/acs.jmedchem.8b01541 (2019).
-
Tokuda, I., Ono, D., Honma, S., Honma, K., and Herzel, H. Coherency of circadian rhythms in the SCN is governed by the interplay of two coupling factors. PLoS Comput. Biol. doi: 10.1371/journal.pcbi.1006607 (2018).
-
Ono, D.*, Honma, K., Yanagawa, Y., Yamanaka, A., and Honma, S.: Role of GABA in the regulation of the central circadian clock of the suprachiasmatic nucleus. J Physiol Sci. 68:333-343 (2018). *: Corresponding author
-
Ono, D. and Yamanaka, A. : Hypothalamic regulation of the sleep/wake cycle. Neuroscience Research (2017).
-
Ono, D.*, Honma, S.*, Nakajima, Y., Kuroda, S., Enoki, R., and Honma, K.: Dissociation of Per1 and Bmal1 circadian rhythms in the suprachiasmatic nucleus in parallel with behavioral outputs. Proc. Natl. Acad. Sci. U S A. doi: 10.1073/pnas.1613374114 (2017). *: Corresponding author
-
Enoki, R., Oda, Y., Mieda, M., Ono, D., Honma, S., and Honma, K.: Synchronous circadian voltage rhythms with asynchronous calcium rhythms in the suprachiasmatic nucleus. Proc. Natl. Acad. Sci. U S A. doi:10.1073/pnas.1616815114 (2017).
-
Enoki, R.#, Ono, D.#, Kuroda, S., Honma, S., and Honma, K.: Dual origins of the intracellular circadian calcium rhythm in the suprachiasmatic nucleus. Scientific Reports 7, 41733. doi: 10.1038/srep41733 (2017) #: Co-first author
-
Ono, D., Honma, S., and Honma, K.: Differential roles of AVP and VIP signaling in the postnatal changes of neural networks for coherent circadian rhythms in the SCN. Science Advances 2, e1600960 (2016).
-
Ono, D., Honma, S., and Honma, K.: Circadian PER2::LUC rhythms in the olfactory bulb of freely moving mice depend on the SCN but not on behavior rhythms. European Journal of Neuroscience 42:3128-3137 (2015).
-
Ono, D., Honma, K., and Honma, S.: Circadian and ultradian rhythms of clock gene expression in the suprachiasmatic nucleus of freely moving mice. Scientific Reports 5, 12310; doi: 10.1038/srep12310 (2015).
-
Tokuda, I.#, Ono, D.#, Ananthasubramaniam, B.#, Honma, S., Honma, K., and Herzel, H. Coupling controls synchrony of clock cells in development and knockouts. Biophysical Journal 109:2159-2170 (2015). #: Co-first author
-
Tsuchiya, Y., Minami, Y., Umemura, Y., Watanabe, H., Ono, D., Nakamura, W., Takahashi, T., Honma, S., Kondoh, G., Matsuishi, T., and Yagita, K. Disruption of MeCP2 attenuates circadian rhythm in CRISPR/Cas9-based Rett syndrome model mouse. Genes to Cells 20:992-1005 (2015).
-
Mieda M., Ono, D., Hasegawa E., Okamoto H., Honma K., Honma S., Sakurai T. Cellular Clocks in AVP Neurons of the SCN Are Critical for Interneuronal Coupling Regulating Circadian Behavior Rhythm. Neuron 85:1103-1116, (2015).
-
Ono, D., Honma, S., and Honma, K.: Cryptochromes are critical for the development of coherent circadian rhythms in the mouse suprachiasmatic nucleus. Nature Communications 4:1666 doi: 10.1038/ncomms2670 (2013).
-
Ono, D., Honma, S., and Honma, K.: Postnatal constant light compensates Cryptochrome1 and 2 double deficiency for disruption of circadian behavioral rhythms in mice under constant dark. PLOS ONE 20;8(11):e80615. doi: 10.1371/journal.pone.0080615 (2013).
-
Enoki, R., Kuroda, S., Ono, D., Hasan, M. T., Ueda, T., Honma, S., and Honma, K.: Topological specificity and hierarchical network of the circadian calcium rhythm in the suprachiasmatic nucleus. Proc. Natl. Acad. Sci. U S A. 109:21498-21503 (2012).
-
Enoki, R., Ono, D., Hasan, M. T., Honma, S., and Honma, K.: Single-cell resolution fluorescence imaging of circadian rhythms detected with a Nipkow spinning disk confocal system. Journal of Neuroscience Methods 207:72-79, (2012).
-
Yoshitane, H., Honma, S., Imamura, K., Nakajima, H., Nishide, S.Y., Ono, D., Kiyota, H., Shinozaki, N., Matsuki, H., Wada, N., Doi, H., Hamada, T., Honma, K., Fukada, Y.: JNK regulates the photic response of the mammalian circadian clock. EMBO Report 13:455-461, (2012).
-
Nishide, S. Y., Ono, D., Yamada, Y., Honma, S., and Honma, K.: De novo synthesis of PERIOD initiates circadian oscillation in cultured mouse suprachiasmatic nucleus after prolonged inhibition of protein synthesis by cycloheximide. European Journal of Neuroscience 35:291-299. (2012).
-
Baba, K., Ono, D., Honma, S., and Honma, K.: A TTX-sensitive local circuit is involved in the expression of PK2 and BDNF circadian rhythms in the mouse suprachiasmatic nucleus. European Journal of Neuroscience 27:909-16. (2008).
-
Honma, S., Inagaki, N., Ono, D., Yoshikawa, T., Hashimoto, S., and Honma, K. :Clock mechanisms for seasonal adaptation: Morning and evening oscillators in the suprachiasmatic nucleus. Sleep and Biological Rhythms 6, 84-90, (2008).
-
Inagaki, N., Honma, S., Ono, D., Tanahashi, Y., and Honma, K. Separate oscillating cell groups in mouse suprachiasmatic nucleus couple photoperiodically to the onset and end of daily activity. Proc. Natl. Acad. Sci. U S A. 104:7664-9. (2007).